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Abstract

We present Autoforecaster∗, an open-source PyTorch library for forecasting time series using Gaussian
Processes (GPs) with flexible kernel compositions with changepoint detection and kernel search. GPs are
a powerful Bayesian approach for modeling time series, providing both point predictions and uncertainty
estimates. A key challenge in applying GPs is selecting an appropriate kernel to capture the covariance
structure of the data. Our library addresses this by implementing a fixed kernel composition approach,
where the kernel is constructed as a sum of base kernels, each capturing different aspects of the data
(e.g. trend, periodicity, noise). The library also provides functionality for kernel search, automatically
optimizing the hyperparameters of the kernel to maximize the marginal likelihood of the data. By
combining these techniques, the library simplifies the process of applying GPs to time series forecasting.
We validate Autoforecaster on several Kaggle time series datasets, demonstrating improved accuracy
compared to baseline methods. The library is available under an open-source license, providing a valuable
tool for researchers and practitioners working with time series data.

Introduction

Time series challenges, seen in fields like finance and global weather predictions, require a solid grasp of
structure in data for effective forecasting [12]. Traditionally, understanding these structures involved complex
and error-prone bespoke data science, relying on manual data fitting [19]. Responding to the need for
simpler and automated approaches, researchers developed methods to streamline this process. In our study,
we propose a new method by combining automatic change point detection with a Gaussian Process with a
composite kernel from Corani et al. (2020). This approach competes effectively with manual methods and
fully automatic forecasting, providing accuracy and potential time savings in specific scenarios [12]. Our
research marks progress in making time series analysis more accessible and efficient, offering insights for
researchers in this complex field.

Our exploration involves combining Gaussian Processes (GPs) with change point detection methods and
assessing their performance against manual forecasting and fixed kernel composition (FKC) baselines. GPs
are adept at handling uncertain or noisy data, providing valuable predictions where confidence is crucial [16].
Kernel selection allows for precise fitting, capturing specific trends, and modeling complex relationships. The
choice of suitable kernels and determining similarity between data points is crucial for constructing effective
GP models [16].

Manual forecasting, relying on human expertise, is a longstanding method for predicting trends but has
drawbacks due to its subjective nature and time-intensive process [3]. In contrast, if we can automate the
kernel selection process, we can make time series forecasting more powerful and accessible to data scientist
and software engineers [19]. By combining a fixed kernel composition with change point detection, our
newest model excels at identifying specific points in a time series where significant statistical changes occur
[5]. Unlike using only a FKC, modeling change points dynamically recognizes shifts in trends, improving
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overall model fit [5]. We show on the Kaggle M4 and M5 forecasting competitions that for comparable run
times, our automatic model is competitive with manual methods [1].

Gaussian Processes for Time Series

A time series problem involves predicting future values of a variable based on its past observations, where
each observation is recorded at discrete time steps.

Time series data can be represented as follows:

X = (x1, ..., xn)

Y = (y1, ..., yn)

where xi represents the observation at time step i in the input sequence, and yi represents the corresponding
output. The forecasting problem involves predicting future values yn+h which involves computing:

p(yn+1, ..., yn+h|y1, . . . , yn)

Gaussian Process

A GP is a set of random variables such that the joint distribution of any finite subset of these variables
follows a Gaussian distribution. We can think of a GP as a distribution over functions, where our goal is to
learn a posterior over all possible functions that can explain the data.[16]. A GP is fully defined by a mean
and covariance function (kernel).

The mean function in GPs can take various forms. A commonly used choice is a constant µ(x) = µ.
When fitting a GP model to data, µ is often estimated using the available data. The mean function µ(x) of
a Gaussian process is given by the expected value of the process at a specific point x [6]:

µ(x) = E[f(x)]

We use a constant mean function in our paper, and rely on the kernels below to capture the data patterns.

Covariance Functions

The kernel determines the strength of the correlation between points [6]. Mathematically, the covariance
function k(x, x′) is defined as the expected value of the product of the differences between the target values
and their respective mean values [6]:

k(x, x′) = E[(f(x)− µ(x))(f(x′)− µ(x′))]

Kernel selection and discovery is an open area of research. The most common kernel is the RBF kernel,
also known as the squared exponential kernel:

KRBF(x, x
′) = exp

(
−∥x− x′∥2

2l2

)
(1)

This kernel is effective for modeling non-linear trends, which computes the distance between pairs of
data points in a feature space. The lengthscale parameter l here determines how relevant the feature is for
the learned function, which is visually represented by the smoothness of the functions. Longer lengthscale
will yield smoother functions, while shorter lengthscale yields rougher functions. It is worth noting that a
shorter lengthscale may bring the risk of overfitting, i.e., the model is highly fitted to the existing data and
performs poorly on new data.

The Matérn kernel, which is interestingly the generalization of the RBF kernel although it appears less
frequently, is:
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KMatern(x, x
′) =

21−ν

Γ(ν)

(√
2ν∥x− x′∥

l

)ν

Kν

(√
2ν∥x− x′∥

l

)
(2)

This kernel has an additional parameter ν, which controls the smoothness of the function. The smaller
ν is, the less smooth the function is. As ν →∞, the kernel becomes equivalent to the RBF kernel.

Linear kernel, a simpler kernel that captures linear trends, is:

KLinear(x, x
′) = xTx′ (3)

It is best used to capture linear relationships between data points but is ineffective when dealing with
non-linear ones. It does not have a lengthscale parameter.

Another common kernel is the Periodic (PER kernel):

KPeriodic(x, x
′) = exp

(
−2 sin2(π∥x− x′∥/p)

l2

)
(4)

Most time series often consist of periodic patterns, whether daily, monthly, or annually, and a periodic
kernel can capture the repeated trends within the data. The lengthscale parameter l here operates similarly
to the lengthscale parameter in the RBF kernel, where a longer length scale decreases the local variation
within repetition and captures less detail.

The Rational Quadratic (RQ) kernel is defined as:

KRQ(x, x
′) =

(
1 +
∥x− x′∥2

2αl2

)−α

(5)

This kernel can be interpreted as an infinite number of different RBF kernels with different lengthscales
added together. This makes it suitable for dealing with complex data sets that don’t have a simple pattern.
The lengthscale parameter here controls the spread of the covariance. It has a positive correlation, while the
scale-mixture manipulates the number of local variations, increasing the scale-mixture and reducing local
variations.

The Spectral Mixture (SM) kernel is:

KSM(x, x′) =

K∑
k=1

wk cos(2πfk∥x− x′∥+ ϕk) exp
(
−2π2f2

k l
2∥x− x′∥2

)
(6)

This kernel is powerful because it learns all the frequencies in the data by learning the spectral density.
The spectral density indicates the probability density of the corresponding kernel or how likely each frequency
is in the data. Hence, the SM kernel can capture extremely complex patterns.
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Figure 1: Functions that GP kernels model.

DataTensor

We introduce the DataTensor, a PyTorch tensor with Pandas semantics that stores additional metadata to
facilitate time series modeling. DataTensor wraps torch.Tensor object and associates header information
specifying column names for the innermost dimension of the tensor. This allows maintaining the semantic
meaning of the data and enables intuitive column-based indexing and operations. The DataTensor class
provides normalization functionality, allowing scaling of specific columns to zero mean and unit variance.
Columns to normalize can be specified either as a list of column names or a dictionary mapping column
names to corresponding torch.distributions.Transform instances. To ensure seamless integration with
PyTorch, the DataTensor class overrides various PyTorch functions and operators. It properly handles
tensor operations, indexing, and slicing, preserving the associated metadata and ensuring consistency across
operations. The class provides utility functions for converting pandas DataFrames to DataTensor instances,
facilitating integration with existing data processing pipelines.

Models

Manual Forecasting

We refer to ”manual forecasting” as the trial and error process of fitting a model (in our case a GP kernel)
to data. In this approach, researchers carefully analyze the data to discern trends and try suitable kernels.
The process of kernel composition then takes place, involving the addition or multiplication of kernels to
construct a model capable of capturing a diverse range of patterns. This is particularly advantageous when
dealing with data exhibiting complex functions.

Similar to architecture search in deep learning, the resulting fit is a local optima conditioned on the quality
of the kernels the modeler selects. It is still the predominant method of fitting short term time series since
researchers can make minute adjustments at every step of the modeling process. Unlike automated methods,
researchers may possess information not present in the data, enabling them to make more comprehensive
predictions. Though time consuming, their unique understanding of the data may yield unexpected outcomes
that automated predictions cannot replicate.
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Fixed Kernel Composition

Fixed kernel composition (FKC) is using a single fixed kernel for all problems of a certain characteristic, eg
time series data. Instead of manually selecting and adjusting kernels to construct forecasting models, we use
a single fixed kernel for all the data sets as in [8]. The biggest change is removing the PER kernel where no
seasonal pattern was observed in the M4 data.

KM4 = RBF + SM1 + SM2

KM5 = RBF + SM1 + SM2 + PER

Corani et al. also adopted a hierarchical Bayesian perspective to FKC, treating the hyperparameters of
each kernel as random variables and learning a distribution for each one. This allowed them to quantify
the uncertainty associated with the hyperparameter and potentially improve the model’s robustness to
overfitting. Instead, we employ maximum likelihood estimation (MLE) to learn a single point estimate of
the hyperparameter that best explains the observed data. While this method doesn’t explicitly account
for uncertainty, it is computationally efficient and performed sufficiently well, particularly with the larger
datasets we used. While automatic, fixed kernel composition may lack the depth of human insights and
domain-specific knowledge that manual forecasting offers, potentially limiting accuracy. Finally, relying
solely on statistical measures in automation also raises the risk of overfitting, hindering adaptability to new
data.

Change point Detection

Change point detection is a method used to identify points in a time series where abrupt and significant
variations have occurred [2]. We use binary segmentation as described below to for change points, and then
fit RBF kernels on the each window of data bifurcated by the changepoints.

Kinput change(x1, x2; {λ, σ1, σ2}) = λ2 exp

(
− 1

2σ2
2

|x1 − x2|
)
, for x1 ≥ change point (7)

Binary Segmentation

We use a greedy binary segmentation method to identify points in a sequence of data where a significant
change or ”break” occurs, which is the change point. It first detects a change point within the entire time
series, then the time series is split into two around this change point, and the detection process will be
repeated on the two resulting segmented time series. This process is repeated until no further change point
is detected [18].

The initial change point, denoted as t̂(1), is given by:

t̂(1) := arg min
1≤t<T−1

[c(y0..t) + c(yt..T )]

where c(·) is the cost function. This operation is ”greedy,” searching for the change point that minimizes
the sum of costs the most. The signal is then split into two at the position of t̂(1). This process is repeated
on the resulting sub-signals until a stopping criterion is met. The algorithm’s complexity is of the order
O(T log T ), making it efficient but approximate.

Since the change points separate time series into segments with similar characteristics, it can more
accurately and precisely capture the trend and use it to forecast future events. This becomes especially
practical in real-world applications where data are constantly affected by external factors that lead to abrupt
changes within the dataset. Change points also segment data into different periods by characteristics, giving
researchers deeper insights into understanding the properties and behaviors of each segment, potentially
allowing businesses to make better decisions.
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Figure 2: BinSeg Algorithm

Require: Signal {yt}, T , cost function c(·), stopping criterion.
1: Initialize L← {}. ▷ Estimated breakpoints.
2: repeat
3: k ← |L|. ▷ Number of breakpoints
4: t0 ← 0 and tk+1 ← T . ▷ Dummy variables.
5: if k > 0 then
6: Denote by ti (for i = 1, . . . , k) the elements in ascending order of L, i.e., L = {t1, . . . , tk}.
7: end if
8: Initialize G as a (k + 1)-long array. ▷ List of gains
9: for i = 0, . . . , k do

10: G[i]← c(yti ..ti+1)−minti<t<ti+1 [c(yti ..t) + c(yt..ti+1)].
11: end for
12: bi ← argmaxi G[i].
13: t̂← argmintbi<t<tbi+1

[c(ytbi ..t) + c(yt..tbi+1)].

14: L← L ∪ {t̂}.
15: until stopping criterion is met.
Ensure: Set L of estimated breakpoint indexes.

Experiments

The datasets we have chosen for this experiment are snippets of data from the M4 [13] and M5 [14] datasets,
which are datasets used in the series of the Makridakis competition that evaluate and compare different
forecasting methods. We select 1871 time series in the M4 dataset with 1853 data points for training and
18 data points for testing, and 1000 time series in the M5 dataset with the first 900 data points for training
and the last 100 data points for testing. We applied 3 different forecasting approaches to both datasets:
manual kernel construction, fixed kernel composition, and change point detection. The first two approaches
are the baselines, while we are particularly interested in the results of the change point detection approach.
We used GPytorch [11] and the autoforecasting library [7] with the following manual kernels to implement
and run the experiments.

KM4 = RBF× PER+ RQ

KM5 = RBF× PER+MAT

Multiplying the RBF and Periodic kernels and adding the result to the RQ kernel creates a composite
kernel structure. This combination allows the model to capture long-term and periodic patterns in the data
through the RBF-Periodic component while accounting for more complex and irregular relationships with
the RQ component. This combination is advantageous because it provides a flexible way to model data that
exhibits both smooth long-term trends and periodic behavior and enhances the model’s robustness to noisy
data and irregularities in the data, using the detailed set of kernels in the specific combination, the GP
model was trained with about 98-99 percent of the selected M4 row, and the rest of the data was used for
testing, with 1000 iterations of training being used for the model.

Metrics

Mean Absolute Error (MAE) is a metric commonly used to evaluate the accuracy of predictive models,
particularly in regression problems. It measures the average absolute difference between the predicted values
(ŷt) and the true values (yt) as follows:

MAE =
1

T

T∑
t=1

|yt − ŷt| (8)

Here, T represents the number of data points or time instances in the test set. A lower MAE indicates a
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better fit of the model of the data, as it quantifies the average magnitude of errors between predictions and
actual values.

Continuous-Ranked Probability Score (CRPS) is a metric used to assess the accuracy of probabilistic
forecasts, such as predictive distribution functions. It compares these probabilistic forecasts with the observed
data. CRPS is defined as follows:

CRPS(Ft, yt) = −
∫ ∞

−∞
(Ft(z)− 1z≥yt)

2
dz (9)

Here, Ft(z) represents the cumulative predictive distribution function at time t, and yt is the observed
target value at time t. The indicator function 1z≥yt is 1 for z ≥ yt and 0 otherwise. A lower CRPS value
indicates a better fit of the probabilistic forecast to the actual observations.

Log-likelihood (LL) is a measure used to evaluate how well a statistical model describes the observed
data, particularly in the context of models providing probabilistic predictions. The LL for a test set is defined
as follows:

LL =
1

T

(
−1

2

T∑
t=1

log(2πσ2
t )−

1

2σ2
t

T∑
t=1

(yt − ŷt)
2

)
(10)

Here, T is the number of data points in the test set, σ2
t represents the variance of the predictive distribution

at time t, yt is the observed value, and ŷt is the predicted value. A higher LL indicates a better match between
the model’s predictions and the observed data, as it represents the likelihood.

Our study employed three distinct forecasting methods—manual forecasting, FKC, and change point—on
randomly selected time series from the M4 and M5 datasets. Each method was for 1,000 iterations, utilizing
90% of the data, and 10% withheld for test. We measured MAE, CRPS, LL, and CPU run times averaged
over five runs.

Results

Analyzing the change point model’s performance on the M4 dataset reveals the model’s observations. The
model’s confidence bounds are larger than the manual model’s and FKC’s. Yet, they encapsulate the
dataset’s dynamics without succumbing to the overfitting of the dataset seen with the FKC model. This
suggests flexibility in the model’s representation of general trends and avoids an overly close adherence to
noise or outliers.

Examining the shape of the confidence bounds and their alignment with the test mean (4) indicates that
the model adeptly reflects the underlying structure of the M4 data. This ability to capture data dynamics
without overfitting distinguishes the model from FKC counterparts, which might tend to closely follow
training data at the risk of losing generalization. Regarding test data predictions, the model follows the
overall trend of the M4 data but falls short in capturing a final small upward trend present in the actual
training data. This discrepancy is reflected in an increasing variance between the predicted test mean and
the real test data, highlighting a limitation in the model’s ability to forecast subtle shifts in data and make
better general trend predictions.

Manual FKC FKC + CP

MAE 0.0852± 0.0168 0.412± 0.0115 0.1563± 0.0295
CRPS 0.084± 0.0051 0.3124± 0.0105 0.0803± 0.0087
NLL 0.2916± 0.0077 0.7544± 0.0090 0.3142± 0.0221

Average CPU Time Per Iteration 7.32± 0.31 25.65± 0.94 8.71± 0.84

Table 1: M4-Related Numerical Results: Averaged Over Five Runs

A noteworthy aspect of the change point model’s behavior is its handling of outliers. Instead of becoming
confused or overcompensating for these anomalies, the model strategically uses them. Outliers are incorpo-
rated to subtly adjust the training mean, guiding it towards a more comprehensive fit that considers the
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Figure 3: This is the overview of the M4 dataset that analyzes anonymous monthly sales figures, showing
training and testing means calculated by all three models, along with the data used for training and testing,
and the confidence bounds of each model.

entire dataset, including outliers. This approach indicates adaptability without succumbing to the influence
of outliers that might lead to overfitting.

In contrast to the M4 dataset, the Change-Point detection model encountered challenges when applied to
the more periodic M5 dataset. The periodic patterns inherent in M5 seemed to elude the model, highlighting
its inability to discern and adapt to the intricacies of such cyclical variations (5). This contrast is noteworthy
as the less periodic M4 dataset showcased a more favorable performance in analyzing specific trends of at
least parts of the data.

One discernible observation was the model’s efficacy in capturing the general trend in transitioning from
the training to the test phase in the M5 dataset (6). This ability to grasp overarching trends indicates a
certain level of adaptability in understanding the broader patterns within the data. However, this proficiency
came at the cost of neglecting the finer periodic trends that characterize the M5 dataset.

A difference emerged when comparing the confidence bounds between the M4 and M5 results. The
M5 dataset exhibited smaller confidence bounds, indicative of a more conservative approach in the model’s
predictions or better confidence in its model’s training and testing means. This conservatism could be
attributed to the model’s inclination towards generalizing the data patterns at the expense of accommodating
the pronounced periodicity in the M5 dataset.

Further scrutiny of the M5 data revealed variations aligning with relative outliers, particularly at the
maxima or minima of the apparent ”periods” in the dataset. These variations might correspond to critical
points in the periodic cycles. The Change-Point detection model, however, seemed to overlook periodic
nuances, emphasizing a tendency toward a more generalized representation of the data, both for the M4 and
M5 dataset results.
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Figure 4: This is the testing portion of the M4 dataset, showing the testing means calculated for each model,
along with the test data, and the confidence bounds for each model.

Figure 5: This is the overview of one of the rows of the M5 dataset of sales data from a store in California.
The figures shows the training (blue) and testing (red) means along with the confidence bounds of the models.
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Figure 6: This is the testing portion of the M5 dataset, showing the testing means calculated by each model,
along with the test data and the confidence bounds of each model

In our comprehensive analysis of three distinct models applied to both the M4 and M5 datasets, we
reviewed their numerical results across four crucial measurement factors of MAE, CRPS, LL (or negative-
LL), and CPU time. The models in focus were the manual-fitting mode, the FKC model, and the change
point model.

Beginning with the M4 dataset, the manual-fitting model demonstrated superior performance by achiev-
ing the best mean and standard deviation combination across the MAE, LL, and CPU run time metrics.
However, regarding the CRPS result, the change point model outperformed the others. Notably, change
point consistently secured the second position across all other c, approaching the performance of the best
model in each metric.

These findings suggest that the manual forecasting model, particularly the variant selected through a
meticulous process involving specific kernels, was well optimized for the M4 dataset. Simultaneously, the
consistently strong performance of change point across all metrics implies that, for datasets characterized by
fewer periodic trends and more extended-scale patterns, change point emerges as an optimal model. This is
especially true when considering the time investment required for designing and implementing a custom-made
manual-fitting model, which demands substantial development efforts.

Turning our attention to the M5 dataset, a different pattern emerges. FKC takes the lead in terms
of MAE and CRPS (comparing mean and standard deviations once again), showcasing its effectiveness in
capturing the complexities of the dataset. Manual forecasting excels for the negative Log Likelihood (used
in this case instead of LL for the M4 results). Surprisingly, change point outshines the others regarding CPU
time, considering it was in the middle for the relatively less complicated M4 dataset. In this dataset, FKC
is the most successful, closely followed by change point, while manual forecasting lags noticeably behind.

These results highlight the strength of FKC, despite its relatively slower run time due to its fully auto-
mated modeling system. Its ability to yield the best results in the periodic M5 dataset, characterized by
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Manual FKC FKC + CP

MAE 0.6186± 0.0256 0.5854± 0.0376 0.5976± 0.0393
CRPS 0.419± 0.00587 0.4184± 0.0172 0.4232± 0.0165
NLL 1.2588± 0.00594 0.9872± 0.04 0.9868± 0.0364

Average CPU Time Per Iteration 2.06± 1.06 3.36± 1.20 2.45± 0.07

Table 2: M5-Related Numerical Results: Averaged Over Five Runs

numerous localized and general pattern shifts, underscores its effectiveness. change point, with its adept
performance, secures the second position, particularly given the dataset’s periodicity and evident general
patterns in the data. Finally, despite exhaustive efforts and kernel combinations, manual forecasting falls
short of replicating the high-performing results achieved in the M4 dataset when applied to the M5 dataset.

Ultimately, change point emerges as a robust performer when confronted with broader data parameters
and certain periodic trends. On the other hand, FKC maintains consistent good performance across diverse
data types especially for more periodic data, albeit at the cost of extended run times for FKC models. The
manual forecasting approach introduces an element of user-dependent variability. However, in our specific
case, we successfully created manual forecasting models that, at the very least, matched the performance
levels exhibited by both the FKC and change point models.

Our experiments generally ran successfully in the M4 dataset, while exhibiting errors and flaws in the
M5 dataset. For example, the confidence bounds demonstrated the same periodic trend in fixed kernel
composition, hence producing a questionable forecast. This may be caused by noisy data in conjunction with
a suboptimal kernel composition and inadequate training of hyperparameters, which leads to an inaccurate
kernel composition that cannot precisely capture the trend and result in erroneous confidence bounds. The
time series selected here are visibly noisy and appear abundant amount of outliers, which may disrupt the
data’s preexisting pattern, hindering the model’s performance to capture the underlying trend. This may
indicate insufficient and ineffective data preprocessing before we use them for training, especially in removing
outliers and adjusting noise levels.

Related Work

Attempts at creating kernel compositions for GPs is not new. For time series problems, Corani et al.
used the fixed kernel composition we compare with but emphasizing the use of hierarchical priors for the
hyperparameters. For the class of problems they benchmark against, they show that performance improves
with this setup.

Structure discovery with GPs has been an active research area over the last decade[10], [15]. [10] uses a
greedy search algorithm while [15] introduced a new structure learning algorithm based on sequential Monte
Carlo sampling.

Change point detection for time series is also an active area of research. [4] have already implemented
change point detection for the automatic analysis of subtle changes within MRI scans, and it turns out to
be much less error-prone than a manual approach by experts. [9] used change point detection to infer the
effectiveness of government interventions in COVID-19 by evaluating the forecasted value with the actual
reported data. More recently, [17] adopted change point detection to analyze many short time series in waste
management.

Conclusion

We compared change point detection and composite kernels with manually selected kernels and showed
competitive results in terms of accuracy and runtime on 2 open-source time series data. As a relatively new
model, change point detection already demonstrates its practical use in automatic time series forecasting and
displays potential for future development. Future directions could include more robust detection of longer
periods of change windows and developing benchmark datasets for fairer and more objective experiments
with change point detection in forecasting.
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